2021 Security Vulnerability Report
CVE Statistics for 2021

Growth Curve
There were 20196 security vulnerabilities (CVEs) published in 2021. In 2020 there were 17084.

The average severity was 7.1 out of 10, which was about the same as in 2020.

Products & Vendors with the most security vulnerabilities published in 2021 Vulnerabilities may exist in multiple products or vendors

By Product

#1

Fedora Project Fedora

1147 vulnerabilities in 2021

#2

Debian Linux

1055 vulnerabilities in 2021

#3

Canonical Ubuntu Linux

591 vulnerabilities in 2021

#4

Google Android

574 vulnerabilities in 2021

#5

Microsoft Windows Server 2016

503 vulnerabilities in 2021

#6

Microsoft Windows 10

486 vulnerabilities in 2021

#7

Microsoft Windows Server 2019

465 vulnerabilities in 2021

#8

Apple Macos

463 vulnerabilities in 2021

#9

Apple iOS

383 vulnerabilities in 2021

#10

Apple Mac OSX

333 vulnerabilities in 2021

#11

Apple iPad OS

333 vulnerabilities in 2021

#12

Microsoft Windows Server 2012

331 vulnerabilities in 2021

#13

Google Chrome

329 vulnerabilities in 2021

#14

Microsoft Windows 8.1

300 vulnerabilities in 2021

#15

Microsoft Windows Rt 8 1

291 vulnerabilities in 2021

#16

Microsoft Windows Server 2008

279 vulnerabilities in 2021

#17

Microsoft Windows 7

254 vulnerabilities in 2021

#18

Apple Watch OS

253 vulnerabilities in 2021

#19

Apple TV OS

240 vulnerabilities in 2021

#20

NetApp Oncommand Insight

231 vulnerabilities in 2021

By Vendor

#1

Fedora Project

1147 vulnerabilities in 2021

#2

Google

1123 vulnerabilities in 2021

#3

Microsoft

1108 vulnerabilities in 2021

#4

Red Hat

1078 vulnerabilities in 2021

#5

Debian

1055 vulnerabilities in 2021

#6

Oracle

869 vulnerabilities in 2021

#7

Canonical

613 vulnerabilities in 2021

#8

Apple

603 vulnerabilities in 2021

#9

Cisco

541 vulnerabilities in 2021

#10

NetApp

523 vulnerabilities in 2021

#11

IBM

373 vulnerabilities in 2021

#12

Adobe

317 vulnerabilities in 2021

#13

Siemens

304 vulnerabilities in 2021

#14
 
F5 Networks

297 vulnerabilities in 2021

#15

Huawei

255 vulnerabilities in 2021

#16

SAP

204 vulnerabilities in 2021

#17

Apache

199 vulnerabilities in 2021

#18

Linux

173 vulnerabilities in 2021

#19

Mozilla

158 vulnerabilities in 2021

#20

GitLab

157 vulnerabilities in 2021

By Weakness

#1
XSS
The software does not neutralize or incorrectly neutralizes user-controllable input before it is placed in output that is used as a web page that is served to other users.
2629
 
13.0%
#2
Memory Corruption
The software writes data past the end, or before the beginning, of the intended buffer. Typically, this can result in corruption of data, a crash, or code execution. The software may modify an index or perform pointer arithmetic that references a memory location that is outside of the boundaries of the buffer. A subsequent write operation then produces undefined or unexpected results.
1447
 
7.2%
#3
SQL Injection
The software constructs all or part of an SQL command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended SQL command when it is sent to a downstream component.
729
 
3.6%
#4
Out-of-bounds Read
The software reads data past the end, or before the beginning, of the intended buffer. Typically, this can allow attackers to read sensitive information from other memory locations or cause a crash. A crash can occur when the code reads a variable amount of data and assumes that a sentinel exists to stop the read operation, such as a NUL in a string. The expected sentinel might not be located in the out-of-bounds memory, causing excessive data to be read, leading to a segmentation fault or a buffer overflow. The software may modify an index or perform pointer arithmetic that references a memory location that is outside of the boundaries of the buffer. A subsequent read operation then produces undefined or unexpected results.
682
 
3.4%
#5
Directory traversal
The software uses external input to construct a pathname that is intended to identify a file or directory that is located underneath a restricted parent directory, but the software does not properly neutralize special elements within the pathname that can cause the pathname to resolve to a location that is outside of the restricted directory.
518
 
2.6%
#6
Dangling pointer
Referencing memory after it has been freed can cause a program to crash, use unexpected values, or execute code.
514
 
2.5%
#7
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
511
 
2.5%
#8
Session Riding
The web application does not, or can not, sufficiently verify whether a well-formed, valid, consistent request was intentionally provided by the user who submitted the request. When a web server is designed to receive a request from a client without any mechanism for verifying that it was intentionally sent, then it might be possible for an attacker to trick a client into making an unintentional request to the web server which will be treated as an authentic request. This can be done via a URL, image load, XMLHttpRequest, etc. and can result in exposure of data or unintended code execution.
460
 
2.3%
#9
Shell injection
The software constructs all or part of an OS command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended OS command when it is sent to a downstream component.
390
 
1.9%
#10
Classic Buffer Overflow
The program copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the size of the output buffer, leading to a buffer overflow. A buffer overflow condition exists when a program attempts to put more data in a buffer than it can hold, or when a program attempts to put data in a memory area outside of the boundaries of a buffer. The simplest type of error, and the most common cause of buffer overflows, is the "classic" case in which the program copies the buffer without restricting how much is copied. Other variants exist, but the existence of a classic overflow strongly suggests that the programmer is not considering even the most basic of security protections.
388
 
1.9%
#11
Improper Privilege Management
The software does not properly assign, modify, track, or check privileges for an actor, creating an unintended sphere of control for that actor.
363
 
1.8%
#12
Command Injection
The software constructs all or part of a command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended command when it is sent to a downstream component.
359
 
1.8%
#13
NULL Pointer Dereference
A NULL pointer dereference occurs when the application dereferences a pointer that it expects to be valid, but is NULL, typically causing a crash or exit. NULL pointer dereference issues can occur through a number of flaws, including race conditions, and simple programming omissions.
358
 
1.8%
#14
Information Disclosure
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
325
 
1.6%
#15
AuthZ
The software performs an authorization check when an actor attempts to access a resource or perform an action, but it does not correctly perform the check. This allows attackers to bypass intended access restrictions.
322
 
1.6%
#16
authentification
When an actor claims to have a given identity, the software does not prove or insufficiently proves that the claim is correct.
297
 
1.5%
#17
Buffer Overflow
The software performs operations on a memory buffer, but it can read from or write to a memory location that is outside of the intended boundary of the buffer.
282
 
1.4%
#18
Unrestricted File Upload
The software allows the attacker to upload or transfer files of dangerous types that can be automatically processed within the product's environment.
269
 
1.3%
#19
AuthZ
The software does not perform an authorization check when an actor attempts to access a resource or perform an action.
233
 
1.2%
#20
Marshaling, Unmarshaling
The application deserializes untrusted data without sufficiently verifying that the resulting data will be valid.
209
 
1.0%
#21
Integer Overflow or Wraparound
The software performs a calculation that can produce an integer overflow or wraparound, when the logic assumes that the resulting value will always be larger than the original value. This can introduce other weaknesses when the calculation is used for resource management or execution control. An integer overflow or wraparound occurs when an integer value is incremented to a value that is too large to store in the associated representation. When this occurs, the value may wrap to become a very small or negative number. While this may be intended behavior in circumstances that rely on wrapping, it can have security consequences if the wrap is unexpected. This is especially the case if the integer overflow can be triggered using user-supplied inputs. This becomes security-critical when the result is used to control looping, make a security decision, or determine the offset or size in behaviors such as memory allocation, copying, concatenation, etc.
205
 
1.0%
#22
XSPA
The web server receives a URL or similar request from an upstream component and retrieves the contents of this URL, but it does not sufficiently ensure that the request is being sent to the expected destination. By providing URLs to unexpected hosts or ports, attackers can make it appear that the server is sending the request, possibly bypassing access controls such as firewalls that prevent the attackers from accessing the URLs directly. The server can be used as a proxy to conduct port scanning of hosts in internal networks, use other URLs such as that can access documents on the system (using file://), or use other protocols such as gopher:// or tftp://, which may provide greater control over the contents of requests.
179
 
0.9%
#23
Resource Exhaustion
The software does not properly control the allocation and maintenance of a limited resource, thereby enabling an actor to influence the amount of resources consumed, eventually leading to the exhaustion of available resources.
174
 
0.9%
#24
Use of Hard-coded Credentials
The software contains hard-coded credentials, such as a password or cryptographic key, which it uses for its own inbound authentication, outbound communication to external components, or encryption of internal data.
165
 
0.8%
#25
Incorrect Default Permissions
During installation, installed file permissions are set to allow anyone to modify those files.
154
 
0.8%

By Category

Content Management

MediaWiki

46 vulnerabilities in 2021

Joomla

28 vulnerabilities in 2021

TYPO3

16 vulnerabilities in 2021

Database

Oracle MySQL

124 vulnerabilities in 2021

MariaDB

15 vulnerabilities in 2021

Couchbase Server

11 vulnerabilities in 2021

Desktop Software

Mozilla Thunderbird

72 vulnerabilities in 2021

Microsoft Office

63 vulnerabilities in 2021

Microsoft Excel

28 vulnerabilities in 2021

Development Tools

Jenkins

29 vulnerabilities in 2021

Microsoft Visual Studio

6 vulnerabilities in 2021

Oracle Java Development Kit (JDK)

5 vulnerabilities in 2021

DevOps

GitLab

156 vulnerabilities in 2021

Kubernetes

6 vulnerabilities in 2021

Docker

2 vulnerabilities in 2021

Email

Microsoft Exchange Server

31 vulnerabilities in 2021

Exim

22 vulnerabilities in 2021

Firmware

Intel Core i5 Processor

2 vulnerabilities in 2021

Intel Core i7 Processor

2 vulnerabilities in 2021

Java Application Servers

Oracle Weblogic Server

43 vulnerabilities in 2021

Apache Tomcat

8 vulnerabilities in 2021

Eclipse Jetty

7 vulnerabilities in 2021

Java Libraries

FasterXML Jackson Databind

12 vulnerabilities in 2021

Libraries

Google Tensorflow

201 vulnerabilities in 2021

OpenSSL

8 vulnerabilities in 2021

Microsoft .NET Core

7 vulnerabilities in 2021

Operating Systems

Debian Linux

1047 vulnerabilities in 2021

Google Android

571 vulnerabilities in 2021

Microsoft Windows Server 2016

503 vulnerabilities in 2021

Runtime Environments

Oracle OpenJDK

20 vulnerabilities in 2021

GoLang Go

16 vulnerabilities in 2021

nodejs node.js

13 vulnerabilities in 2021

Server Software

Microsoft Sharepoint Server

48 vulnerabilities in 2021

Microsoft Sharepoint Enterprise Server

31 vulnerabilities in 2021

OpenBSD OpenSSH

3 vulnerabilities in 2021

Virtualization

Oracle VM VirtualBox

46 vulnerabilities in 2021

QEMU

26 vulnerabilities in 2021

Citrix Xen Desktop

1 vulnerability in 2021

Web Application Framework

Django Project Django

8 vulnerabilities in 2021

Microsoft ASP.NET Core

3 vulnerabilities in 2021

Laravel

1 vulnerability in 2021

Web Applications

Apple iCloud

12 vulnerabilities in 2021

Web Browsers

Google Chrome

308 vulnerabilities in 2021

Mozilla Firefox

122 vulnerabilities in 2021

Web Servers

Apache HTTP Server

17 vulnerabilities in 2021


Report Last Updated: June 2, 2023